博彩网-博彩通-百家乐-百家乐平台_百家乐_全讯网 (中国)·官方网站

學(xué)術(shù)動態(tài)

當(dāng)前位置: 首頁 - 學(xué)術(shù)動態(tài) - 正文

學(xué)術(shù)報告—Dynamical Systems on Networks and their Applications: Perspectives from Population Dynamics

閱讀量:

報 告 人:帥智圣

主 持 人:張曉穎

時    間:2019年6月14日10:00

地    點(diǎn):理學(xué)院五樓大數(shù)據(jù)實(shí)驗(yàn)室

主辦單位:理學(xué)院


報告人簡介:

帥智圣,分別于2001年和2004年在東北師范大學(xué)獲數(shù)學(xué)學(xué)士學(xué)位和應(yīng)用數(shù)學(xué)碩士學(xué)位,并于2010年在加拿大阿爾伯塔大學(xué)獲理學(xué)博士學(xué)位,后獲加拿大自然科學(xué)與工程研究委員會頒發(fā)的博士后獎(NSERC Postdoctoral Fellowship)資助,在維多利亞大學(xué)從事兩年博士后研究。從2012年8月起,任教于美國中佛羅里達(dá)大學(xué),現(xiàn)為該校數(shù)學(xué)系副教授(tenured)。主要研究興趣為微分方程、動力系統(tǒng)、及其在生物數(shù)學(xué)中的應(yīng)用。已在包括Journal of Differential Equations, Journal of Mathematical Biology, Proceedings of the American Mathematical Society, SIAM Journal on Applied Mathematics等國際著名刊物發(fā)表論文30余篇。其成果被同行廣泛引用,論文累計已被引用1700余次。獲多項(xiàng)學(xué)術(shù)、科研和教學(xué)獎勵,其中包括國家優(yōu)秀自費(fèi)留學(xué)生獎學(xué)金(中國),Izaak Walton Killam紀(jì)念獎學(xué)金(加拿大),中佛羅里達(dá)大學(xué)教學(xué)創(chuàng)新(TIP)獎。主持多項(xiàng)科研項(xiàng)目,其中包括美國國家科學(xué)基金委(NSF)和Simons Foundation科研項(xiàng)目。

觀點(diǎn)綜述:

Many large-scale dynamical systems arising from different fields of science and engineering can be regarded as coupled systems on networks. Examples include biological and artificial neural networks, nonlinear oscillators on lattices, complex ecosystems and the transmission models of infectious diseases in heterogeneous populations. Of particular interest is to investigate in what degree and fashion the dynamical behaviors are determined by the architecture of the network encoded in the directed graph. We will address this from population dynamics perspectives.

Specifically, many recent outbreaks and spatial spread of infectious diseases have been influenced by human movement over air, sea and land transport networks, and/or anthropogenic-induced pathogen/vector movement. These spatial movements in heterogeneous environments and networks are often asymmetric (biased). The effects of asymmetric movement versus symmetric movement will be investigated using several epidemiological models from the literature, and the analytical tools employed are from differential equations, dynamical systems to matrix theory and graph theory. These investigations provide new biological insights on disease transmission and control, and also highlight the need of a better understanding of dynamical systems on networks.

地址:中國吉林省長春市衛(wèi)星路6543號 

郵編:130022

吉ICP備050001994號-5

吉公網(wǎng)安備22010402000005號

百家乐官网3宜3忌| 阿坝县| 真人百家乐国际第一品牌| 线上百家乐游戏| 澳门百家乐网址| 大富豪国际娱乐城| 新2百家乐现金网百家乐现金网| 百家乐投注心态| 章丘市| 定做百家乐桌子| 带百家乐官网的时时彩平台| 恒利百家乐的玩法技巧和规则 | 宝马百家乐官网的玩法技巧和规则| 太阳城百家乐手机投注| 云博娱乐城| 百家乐路纸计算| 赌博堕天录漫画| 聚宝盆百家乐的玩法技巧和规则| 澳门百家乐官网指数| 百家乐大赌城| 娱乐城百家乐官网技巧| 二八杠语音报牌器| 百家乐官网分享| 百利宫娱乐城信誉| 百家乐完美一对| 老人头百家乐官网的玩法技巧和规则 | 做生意门面对着什么方向好| 大赢家娱乐| 网上玩百家乐的玩法技巧和规则| 千亿国际娱乐城| 大中华百家乐的玩法技巧和规则 | 威尼斯人娱乐城排名| 百家乐有没有攻略| 金赞娱乐| 大发888体育| 网上百家乐内幕| 申博娱乐城开户| 大发888娱乐场下载 游戏平台| 新利百家乐官网的玩法技巧和规则| 大发888娱乐城客户端下载| 赌百家乐可以赢钱|